非晶材料是由液体快冷冻结而成的结构无序的亚稳态固体.在受力条件下,非晶材料表现出独特和复杂的流变行为,具有跨尺度的高度时空不均匀特征,并在一定条件下表现出自组织临界行为,和自然界以及物理系统中许多复杂体系的动力学行为相似.本文结合作者近年来在非晶合金流变行为方面的研究结果,对非晶材料流变的研究进展和物理机制的认识进行介绍,包括非晶材料流变的跨尺度特征、表征和微观结构机制,以及近年来发现的非晶力学流变的自组织临界行为、物理机制等.最后,对非晶材料流变行为研究中亟需解决的问题进行了总结和展望.
Amorphous solids are metastable materials formed by the rapid quenching of liquid melts. Under mechanical stress, amorphous solid displays unique and complex plastic flow behavior, which is both spatially and temporally inhomogeneous on different length scales. In some cases, the plastic flow behavior of amorphous solid can evolve into the self-organized critical state, which is similar to many complex phenomena in nature and physics such as earthquakes, snow avelanches, motions of magnetic walls, etc. In this paper, we briefly review the recent research progress of the plastic flows of amorphous solids, with an emphasis on the plastic flow of metallic glass which has been one of our research loci in past few years. The review begins with an introduction of the inhomogeneous flow behaviors on different scales, from the macroscopical-scale spatially inhomogeous shear bands, temporally intermittent serrated flow to the atomic-scale localized viscoelastic behavior in metallic glass. The microscopical deformation theories including free volume model and shear transformation zone model, and recent efforts to elucidate macrosopical flow behaviors with these theories, are also presented. Finally~ recent progress of the self-organized critical (SOC) behaviors of the plastic flow of metallic glass are reviewed, with an emphasis on its experimental characterizations and the underlying physics. The emergence of SOC in the plastic flow is closely related to the interactions between plastic flow carriers, and based on this point, the relation between the SOC behavior and the plasticity of metallic glass is elucidated. The implications of plastic flow of metallic glass for understanding the occurence of earthquakes are also discussed. The review is also concluded with some perspertives and unsolved issues for the plastic flow of amorphous solids.