研究一类具有时滞的神经网络模型.通过分析系统的特征方程及考虑不同的时滞对系统动力学行为的影响,得到系统的平衡点稳定及Hopf分支产生的条件.数值模拟验证了所得理论分析的结果的正确性,补充了前人的研究成果.
In this paper,a delayed neural networks model is investigated.By analyzing the associated characteristic equation and studying how the different delays affect the dynamical behavior of system,the condition of stability of equilibrium and the existence of Hopf bifurcation are obtained.Numerical simulations are carried out to justify the theoretical findings.Our result is a good complement to the earlier publications.