位置:成果数据库 > 期刊 > 期刊详情页
双聚类算法在电信高价值客户细分的应用
  • ISSN号:1001-9081
  • 期刊名称:计算机应用
  • 时间:2014.6.10
  • 页码:1807-1811
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]广东医学院信息工程学院,广东东莞523808, [2]华南师范大学物理与电信工程学院,广州510006
  • 相关基金:国家自然科学基金资助项目(71102146);广州市科技计划项目(2011J4300046);广东医学院面上基金资助项目(XK1330).
  • 相关项目:柔性资源约束的分布式协同产品开发项目多层次集成调度研究
作者: 林勤|薛云|
中文摘要:

针对传统客户价值细分方法在高价值客户细分时不够精细化的问题,引入了大均值子矩阵(LAS)双聚类算法.该方法在客户样本和消费属性两个维度上对消费记录进行双向聚类,可以挖掘出高消费、高价值的客户群体.以某电信公司的高价值客户细分为实例,通过定义一个价值尺度和构建一个PA指标,将所提算法与K均值(K-means)算法进行性能比较,实验结果表明,所提算法能挖掘出更多的高价值客户群体,且能够对客户属性进行更加精细的划分,因此它更适合应用于高价值客户市场的识别和细分.

英文摘要:

To improve the accuracy of traditional method for customer segmentation, the Large Average Submatrix (LAS) biclustering algorithm was used, which performed clusting on customer samples and consumer attributes simultaneously to identify the upscale and high-value customers. By introducing a new value yardstick and a novel index named PA, the LAS biclustering algorithm was compared with K-means clustering algorithm based on a simulation experiment on consumption data of a telecom corporation. The experimental result shows that the LAS biclustering algorithm finds more groups of high-value customers and obtains more accurate clusters. Therefore, it is more suitable for recognition and segmentation of high-value customers.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679