本文提出了一种新模型来研究液层在其纯蒸气中的蒸发热动力学特征,尤其是当蒸发界面张力驱动流占主导作用时(如微重力环境中)液层热毛细对流和界面蒸发始终耦合在一起。气-液界面的传热传质规律有待深入研究。本文数值模拟研究了蒸发相变界面热毛细对流与蒸发效应的耦合机质,得到了不同蒸发模式和不同强度热毛细对流蒸发液层的温度分布、蒸发速率以及对流流场分布的数值解。论述了蒸发Biot数和Marangoni数对界面传热传质的影响,发现并解释了蒸发和热毛细耦合的三种模式。
A new model of the pure evaporating liquid layer in contact with its own vapor is proposed to study the behaviors of evaporation thermodynamics, especially in microgravity condition where the interface-tension-driven flows dominate and the thermocapillary convection is coupled with evaporation at interface. The phenomena of heat and mass transfer at vapor-liquid interface need to be studied. The coupling of thermocapillary convection and evaporation effect is analyzed numerically in present paper. Different evaporation modes and the corresponding numerical results of temperature profiles, evaporation flux and convective flow fields are presented for different cases of thermocapillary convection with evaporation. The influence of evaporation Biot number and Marangoni number on the interracial mass and heat transfer is investigated and three different regimes of coupling mechanisms are found and explained.