位置:成果数据库 > 期刊 > 期刊详情页
A Multi-agent Framework for Mining Semantic Relations from Linked Data
  • 期刊名称:Journal of Zhejiang University SCIENCE C
  • 时间:2012.4
  • 页码:295-307
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]School of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China, [2]Collegc of Information, Zhejiang Sci-Tech University, Hangzhou 310018, China
  • 相关基金:Project supported by the National Natural Science Foundation of China (Nos. 61070156 and 61100183) and the Natural Science Foundation of Zhejiang Province, China (No. Yl110477)
  • 相关项目:面向在线社会网络的多源信任融合模型研究
中文摘要:

连接数据是被大量的网代理人出版,存取,并且操作的连结资源描述框架(RDF ) 图的一个分散的空格。这里,我们在场为采矿的一个多代理人框架从连接数据,关系的发现,管理,和确认能被不同代理人独立地在执行的假想语义关系。这些代理人由出版并且交换相互依赖的知识元素在关系采矿协作,例如,假设,证据,和证明,产生连接并且评价多样的知识元素的一个证据的网络。模拟结果证明框架在多代理人环境是可伸缩的。真实世界的应用证明框架对在社会领域的学科交差、合作的关系发现任务合适。

英文摘要:

Linked data is a decentralized space of interlinked Resource Description Framework (RDF) graphs that are published, accessed, and manipulated by a multitude of Web agents. Here, we present a multi-agent framework for mining hypothetical semantic relations from linked data, in which the discovery, management, and validation of relations can be carried out independently by different agents. These agents collaborate in relation mining by publishing and exchanging inter-dependent knowledge elements, e.g., hypotheses, evidence, and proofs, giving rise to an evidentiary network that connects and ranks diverse knowledge elements. Simulation results show that the framework is scalable in a multi-agent environment. Real-world applications show that the framework is suitable for interdisciplinary and collaborative relation discovery tasks in social domains.

同期刊论文项目
期刊论文 7 会议论文 4 获奖 2
期刊论文 14 会议论文 1 专利 4 著作 2
同项目期刊论文