The effect of tensor force on the density dependence of nuclear symmetry energy has been investigated within the framework of the Brueckner-Hartree-Fock(BHF) approach. It is shown that the tensor force manifests its effect via the tensor 3 S D1channel. The density dependence of symmetry energy Esym turns out to be determined essentially by the tensor force from the π meson and ρ meson exchanges via the 3 S D1 coupled channel. Increasing the strength of the tensor component due to the ρ-meson exchange tends to enhance the repulsion of the equation of state of symmetric nuclear matter and leads to the reduction of symmetry energy. The present results confirm the dominant role played by the tensor force in determining nuclear symmetry energy and its density dependence within the microscopic BHF framework.
The effect of tensor force on the density dependence of nuclear symmetry energy has been investigated within the framework of the Brueckner-Hartree-Fock (BHF) approach. It is shown that the tensor force manifests its effect via the tensor 3SD1 channel. The density dependence of symmetry energy Esym turns out to be determined essentially by the tensor force from the π meson and p meson exchanges via the 3SD1 coupled channel. Increasing the strength of the tensor component due to the p-meson exchange tends to enhance the repulsion of the equation of state of symmetric nuclear matter and leads to the reduction of symmetry energy. The present results confirm the dominant role played by the tensor force in determining nuclear symmetry energy and its density dependence within the microscopic BHF framework.