位置:成果数据库 > 期刊 > 期刊详情页
基于FWA-LSSVR智能算法的钢铁行业用电量预测研究
  • ISSN号:1004-9649
  • 期刊名称:《中国电力》
  • 时间:0
  • 分类:TM715[电气工程—电力系统及自动化]
  • 作者机构:国网冀北电力有限公司经济技术研究院, 华北电力大学经济与管理学院
  • 相关基金:国家自然科学基金资助项目(71471059)~~
中文摘要:

针对近年来宏观经济指标与钢铁行业用电量关联度下降的情况,提出了一种基于行业产品及原材料价格的用电量预测方法,并使用移动平均法和时差相关分析法进行数据消噪处理和价格影响滞后期测算,在此基础上,建立了烟花算法优化最小二乘支持向量回归机智能预测模型。利用该模型对某地区实际月度用电量进行预测,结果表明,与多元线性回归、BP神经网络等模型相比,所提出的方法具有更好的预测性能,更适用于钢铁行业用电量月度预测,可为准确预测钢铁行业用电量、合理把握电力需求波动及制定经济合理电力调配计划提供参考,为电源和电网的建设提供辅助决策支持。

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国电力》
  • 中国科技核心期刊
  • 主管单位:国家电网公司
  • 主办单位:国网能源研究所 中国电机工程学会
  • 主编:邱忠涛
  • 地址:北京市昌平区北七家镇未来科技城国家电网公司园区B315
  • 邮编:102209
  • 邮箱:zhongshizhang@sgcc.com.cn
  • 电话:010-66603808
  • 国际标准刊号:ISSN:1004-9649
  • 国内统一刊号:ISSN:11-3265/TM
  • 邮发代号:2-427
  • 获奖情况:
  • 2004年荣获第三届“国家期刊奖”,2001年进入“中国期刊方阵”的双效期刊,中国电力报刊协会优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27723