Controllable formation and manipulation of domain walls in one-dimensional(1D) nanostripes underpins a promising type of emergent spintronic device. Magnetic skyrmion is topologically stable whirlpool-like spin texture and is expected to replace familiar domain wall phenomena to build such devices, owing to its prominent features including small size,topological stability and the small critical current required to move it. It is thus essential to understand skyrmions’ properties in such a nanostructured element. In this paper, we mainly give fundamental insight into this issue. Experimental achievements in the formation and stability of individual skyrmions in the nanostripe are outlined in detail.
Controllable formation and manipulation of domain walls in one-dimensional(1D) nanostripes underpins a promising type of emergent spintronic device. Magnetic skyrmion is topologically stable whirlpool-like spin texture and is expected to replace familiar domain wall phenomena to build such devices, owing to its prominent features including small size,topological stability and the small critical current required to move it. It is thus essential to understand skyrmions' properties in such a nanostructured element. In this paper, we mainly give fundamental insight into this issue. Experimental achievements in the formation and stability of individual skyrmions in the nanostripe are outlined in detail.