设λf(n)是标准化的Hecke算子T_n的尖形式的傅立叶系数,σ(n)是除数和函数,?(n)是欧拉函数。利用解析的方法研究混合数论函数λ_f(n)σ~b(n)?~c(n)的平均阶估计,得到了上界估计Σn≤xλ_f(n)σ~b(n)?~c(n)x~(b+c+1/2+ε),这里ε〉0是任意的。
Let λf(n) be the Fourier coefficients of cusp forms of the normalized Hecke operator Tn, σ(n) be the sumof-divisors function, and Ф(n) be the Euler's function. The average order estimation of hybrid arithmetic functions of the form λf(n) σb(n)ФC(n) is investigated by using analytic methods, and the upper bound estimate Σn≤xλ_f(n)σ~b(n)?~c(n)x~(b+c+1/2+ε) for any ε 〉 0 is obtained.