讨论一类具有源的Newton渗流方程Cauchy问题ut=Δum-λup,(x,t)∈ST=RN×(0,T)解的非存在性.采用反证法,证明在一定条件下方程不存在非平凡解.
Discuss the non-existence of solutions of the Cauchy problem for a kind of the Newton diffusion equations with source,ut=Δum-λup,(x,t)∈ST=RN×(0,T).By using reductio ad absurdum,we prove that under certain conditions,the equation does not exist non-trivial solutions.