位置:成果数据库 > 期刊 > 期刊详情页
姿态和光照可变条件下的仿射最小线性重构误差人脸识别算法
  • ISSN号:0732-2112
  • 期刊名称:电子学报
  • 时间:2012.10.1
  • 页码:1965-1970
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学技术大学多媒体计算与通信教育部-微软重点实验室,安徽合肥230027
  • 相关基金:国家自然科学基金(No.61103134,No.60933013);“新一代宽带无线移动通信网”国家科技重大专项(N0.2010ZX03004-003);中央高校基本科研业务经费专项资金(No.WK210023002,No.WK2101020003);安徽省优秀青年人才基金(No.BJ2101020001)
  • 相关项目:基于稀疏表示的高效鲁棒大规模物体识别方法研究
中文摘要:

传统人脸识别算法通常把光照处理和姿态校正作为两个相对独立的处理过程,难以取得全局最优识别性能.针对该问题,本文根据人脸的非刚体特性,将仿射变换和分块思想融入线性重构模型中,提出了一种基于仿射最小线性重构误差(Atrnne Minimum Linear ReconstructionEITOr,AMLRE)的人脸识别算法,在处理光照问题的同时能够补偿姿态变化造成的局部区域对齐误差,以获得更好的全局识别性能.在公共数据集上的实验结果表明,本文提出的算法对光照和姿态有很好的鲁棒性,同时与现有的人脸识别算法相比,本文的算法具有更高的识别率.

英文摘要:

Traditional face recognition algorithms usually handle variations in illumination and pose independently. There fore,it is difficult to obtain the global optimal recognition performance. To this end, we propose an affme minimum linear recon struction error (AMLRE) algorithm based on the non-rigid characteristics of human faces in this paper,which combines an affme transformation model and the idea of patch with a linear recomlruction model. Our algorithm simultaneously handles illumination variations as well as compensates the local area alignment errors caused by pose variations, which achieves much better recognition performance. Comprehensive experiments on several public face datasets clearly demonstrate that our proposed algorithm is robust to beth illumination and pose,and thus outperforms most state-of-the-art methods.

同期刊论文项目
期刊论文 52 会议论文 84
同项目期刊论文