采用磁控二靶(Ga30Sb70和Sb80Te20)交替溅射方法制备了新型Ga30Sb70/Sb80Te20纳米复合多层薄膜,对多层薄膜周期中Ga30Sb70层厚度对相变特性的影响进行了研究.结果表明,多层薄膜的结晶温度可以通过周期中Ga30Sb70层厚度进行调节,且随着Ga30Sb70层厚度的增加而升高. Ga30Sb70/Sb80Te20纳米复合多层薄膜的光学带隙随Ga30Sb70层厚度的增加而增大.采用皮秒激光脉冲抽运光探测技术研究了多层薄膜的瞬态结晶动力学过程,利用不同能量密度的皮秒激光脉冲可以实现Ga30Sb70/Sb80Te20多层薄膜非晶态和晶态的可逆转变.
Novel Ga30Sb70/Sb80Te20 nanocomposite multilayer films are prepared by alternate sputter deposition of two independent targets of Ga30Sb70 and Sb80Te20 in a magnetron sputtering system. The influence of layer thickness of Ga30Sb70 on the phase-change behavior of Ga30Sb70/Sb80Te20 multilayer film is investigated. The results show that the crystallization temperature can be controlled by adjusting the layer thickness of Ga30Sb70. The crystallization temperature increases with increasing the layer thickness of Ga30Sb70. The optical band gap is also found to increase with increasing in the layer thickness of Ga30Sb70. Transient crystallization dynamics of Ga30Sb70/Sb80Te20 multilayer film induced by single picosecond laser pulse pumping, is studied. The reversible phase transition between amorphous and crystalline state can be achieved by using picosecond laser pulses with different fluences.