针对目前行人使用智能终端进行室内定位精度不高且仅能提供二维平面位置坐标的问题,提出了一种融合无线保真定位和行人航迹推算的室内分层三维定位技术.在行人航迹推算定位中,通过检测俯仰角速度突变来区分行人水平行走和上下楼两种行为模式.在上下楼时利用有效跨步和建筑物楼梯信息得到行人高度变化量,构建统一两种不同行为模式的推算方程,实现了三维行人航迹推算.在无线保真与行人航迹推算融合的粒子滤波环节中,提出融合无线保真、行人航迹推算、建筑信息和行为模式的粒子滤波算法,将建筑信息和行为模式融入粒子的权值计算和采样之中,有效地提高了融合定位的精度.在多楼层的室内环境下进行试验验证,结果表明,水平定位平均误差为2.6m,高度估计平均误差为1.1m,满足个人智能用户终端对于位置服务的需求,并且高程参量使得用户能够感知到楼层信息.
A layered indoor 3D positioning technology based on WiFi positioning and Pedestrian Dead Reckoning (PDR) is proposed to solve the problem that the pedestrian can only get coordinates in the 2D plane and low accuracy of current indoor localization from intelligent terminal. In the PDR location, the pedestrian's horizontal walking or taking up-down stairs can be distinguished by detecting the pitch-rate mutation. Height change of the pedestrian is obtained by using the effective steps and stairs information. The equations of the two different behavior patterns are constructed and three-dimensional PDR is realized. In the part of the filter, a particle filter algorithm combining WiFi, PDR, building information and behavior patterns is proposed. By fusing the building information and behavior models into the weight calculation and the sampling of the particle, the localization precision is effectively improved. The results show that the average error of the horizontal location is 2. 6 m and the average error of the height estimation is 1.1 m, which satisfies the demand of the individual intelligent terminal for the location service, with the elevation parameter enabling the user to recognize floor information.