Schrodinger方程-△u+λ2u=|u|2q-2u有唯一的正径向对称解Uλ,当r→∞时Uλ指数衰减到零.因此可以预料薛定谔方程组-△u1+u1=|u1|2q-1u1-εb(x)|u2|1|u1|q-1u1,-△u2+u2=|u2|2q-2u2-εb(x)|u1|1|u2|q-1u2存在在某些点附近形同Uλ的多峰解.对于u=(u1,u2)∈H1(R3)×H1(R3)定义非线性泛函Iε(u)=I1(u1)+I2(u2)-ε/q∫R3b(x)|u1|q|u2|qdx,其中I1(u1)=1/2||u1||2-1/2q∫R3|u1|2qdx,I2(u2)=1/2||u2||2ω-1/2q∫R3|u2|2qdx.证明了此泛函的临界点就是薛定谔方程组的解.设Z为非扰动问题的解流形,TzZ为此流形的切空间.寻求Iε的形如z+w的临界点,其中W∈(TzZ)⊥.应用Iε的性质,证明了Lε在近似于(n∑i=1U(x-ξi),n∑i=1V(x-ξi)1的多峰解.
The Schrodinger equation -△u+λ2u=|u|2q-2u has a unique positive radial solution Uλ, which decays exponentially at infinity. Hence it is reasonable that the Schrolinger system -△u1+u1=|u1|2q-1u1-εb(x)|u2|1|u1|q-1u1,-△u2+u2=|u2|2q-2u2-εb(x)|u1|1|u2|q-1u2 has multiple-bump solutions which behave like Uλ in the neighborhood of some points. For u=(u1,u2)∈H1(R3)×H1(R3), a nonlinear functional Iε(u)=I1(u1)+I2(u2)-ε/q∫R3b(x)|u1|q|u2|qdx,is defined,where I1(u1)=1/2||u1||2-1/2q∫R3|u1|2qdx and I2(u2)=1/2||u2||2ω-1/2q∫R3|u2|2qdx. It is proved that the solutions of the system are the critical points of I,. Let Z be the smooth solution manifold of the unperturbed problem and TzZ is the tangent space. The critical point of I is rewritten as the form of z + w, where w ∈ (TzZ)⊥. Using some properties of Iε, it is proved that there exists a critical point of I, close to the form which is a multi-bump solution.