By using an f-plane barotropic quasi geostrophic model in the rectangular coordinates with a grid spacing of 5 km,ten experiments whose integration time is 36 hours are performed in order to study the interaction between a typhoon vortex and a mesoscale vortex whose initial center position is located at 2 r_m northwest to the typhoon center,where r_m is the radius of maximum wind of the typhoon vortex. Results show that the interaction can create a pair of smaller scale vortices or lumps,which extend from the outside region of the typhoon to near its center,resulting in the inward propagation of mesoscale vorticity.In this process,the vorticity concentration of the mesoscale vortex may appear.The coexistence of the propagation and the concentration makes the increase of vorticity in the inside region i.e.a more intensive typhoon.Meanwhile,the intensity of the lump with positive vorticity oscillates with time,with the oscillation period being several hours,the distance from the typhoon center to the lump center also has a similar oscillation period,which reduces the oscillation of typhoon intensity.In the case of stronger circular basic flow,the interaction can make the intensification of typhoon more obviously. In addition,in some parametric conditions,the interaction may break down the continuous vorticity zone,exhibiting a cluster of smaller vorticity lumps.