研究了一类含位势Sobolev—Hardy极值函数,这类函数是相应的最佳位势Sobolev—Hardy常数的达到函数。运用巧妙细致的分析方法,对这一类极值函数进行了截断误差估计,这些估计结果对于研究带有含Sobolev-Hardy临界项的椭圆方程解的存在性具有重要意义。
A kind of extremal weighted Sobolev-Hardy functions by which the best Sobolev-Hardy constants can be achieved was discussed. By delicate analytic methods, the cutting-off error estimates were obtained. They play an important role in the study of elliptic problems with critical Sobolev-Hardy exponents.