位置:成果数据库 > 期刊 > 期刊详情页
基于小波降噪与支持向量机的恒星光谱识别研究
  • ISSN号:1000-0593
  • 期刊名称:《光谱学与光谱分析》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京师范大学信息科学与技术学院,北京100875
  • 相关基金:国家自然科学基金(60275002)和教育部留学回国人员科研启动基金资助
中文摘要:

提出了一种对恒星光谱识别的新方法。根据恒星光谱数据的特性,我们以支持向量机为核心技术构建光谱识别器。由于恒星光谱数据通常含有较高的噪声,如果直接进行分类,识别率往往较低。因此作者首先采用小波分析的方法对原始光谱数据进行降噪预处理,提取光谱的特征,然后馈送到支持向量机完成对光谱数据的最终识别。利用实际光谱数据(Jacoby,1984)对所提出的技术进行检测,实验结果表明使用这种小波分析结合支持向量机的技术的识别效果要优于使用支持向量机结合主分量分析降维技术的识别方法。另外,作者还比较了支持向量机与传统甄别分析的分类性能,对实际及合成光谱进行实验的结果显示了支持向量机的识别正确率不但优于常见的5种甄别分析方法的识别率,而且有较强的泛化能力。

英文摘要:

The present paper describes a new technique for stellar spectral recognition. Considering the characteristics of stellar spectral data, support vector machine (SVM) was adopted to build a recognition system as kernel. Because stellar spectral data sets are usually extremely noisy, the correct classification rate of direct applying SVM is low. Consequently, wavelet de-noising method was proposed to reduce noise first and extract the main characteristics of stellar spectra. Then SVM was used for the recognition. Based on the real-world stellar spectra contributed by Jacoby et al. (1984), it has proven that there will be a better performance using this composite classifier which combines wavelet and SVM than using SVM with principle component analysis data dimension reduction teehniqu. From the experiment of comparison of discriminant analysis and SVM based on stellar spectra for evolutionary synthesis, we can see that the correct classification rate of SVM is higher than that of discriminant analysis methods, and a well generalization ability is achieved.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642