为实现补苗装置精准定位控制,解决自动移栽作业过程中因穴盘缺苗和取苗投苗失败而导致的漏栽问题,采用自适应Fuzzy-PID控制算法来实现钵苗输送的步进定位控制。构建了步进电机角速度控制传递函数的数学模型,设计了自适应Fuzzy-PID控制器及其模糊规则,通过MATLAB的Simulink模块建立了基于模糊PID控制器的步进电机系统角速度控制模型,以阶跃信号作为激励信号,自适应模糊PID控制和PID控制的仿真试验表明:PID控制的响应时间为7 s,出现超调量为0.1的振荡,通过调整PID控制器参数增大比例系数,系统响应时间缩短为2.2 s,系统响应速度明显加快,且未出现振荡环节;自适应模糊PID的响应时间为0.12 s,步进电机系统快速到达阶跃响应的稳态值,步进电机角速度控制稳定,角速度响应快,满足钵苗输送的定位要求。自动补苗试验结果表明:在植苗频率为40、50与60株/min时,补苗成功率分别为100%,100%、95.8%,且只要光纤传感器检测到漏苗信号,基于自适应Fuzzy-PID控制的步进电机系统快速响应,补苗控制系统都能准确及时地进行自动补苗。该研究可为解决自动移栽机田间作业的漏栽问题提供参考。
There is more serious seedling leakage phenomenon for duckbill-type automatic transplanter. When the seedlings in plug tray are lacked or the picking seedling machinery fails to pick seedling or the trajectory is inaccurate, throwing seedling to duckbill planter will cause cavity phenomenon on the surface of soil. Current research has focused on seedlings detection out of plug tray, aiming to provide guidelines in picking seedling mechanism's work regularity. However, it cannot resolve the problems that picking seedling needle clamp fails to grip seedlings into duckbill planter, which leads to seedling trajectory deviation. In this paper, a new auto-detect seedlings device suitable for automatic transplanting machine was designed in order to solve the problems above. Seedling positioning detection control system was analyzed and studied systematically. Different from general control system of transplanting machine, which was commonly simple closed-loop control, a method was developed, which adopted the self-adaptation fuzzy-PID (proportion, integral, derivative) control algorithm. It could control stepping motor angle speed firmly, improve response speed to angle speed, and control seedlings positioning accurately on automatic detection system. The mathematical model of the stepping motor velocity control transfer function was developed, and the adaptive fuzzy-PID controller and the fuzzy rules were designed. The mathematical model of angular speed control of stepping motor was established through MATLAB Simulink module based on fuzzy-PID controller of stepper motor system. The control model took step signal as excitation signal, and the adaptive fuzzy-PID control and PID control simulation experiments showed that when the system exerted incentive through step signal, the response time of PID control was 7 s, the system response was slow, and the shock with a super adjustable volume of 0.1 appeared. Through adjusting PID controller parameter and increasing proportion coefficient, the system response time wa