位置:成果数据库 > 期刊 > 期刊详情页
大数据环境下高维数据的快速重复检测方法
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]暨南大学信息科学技术学院,广州510632, [2]中山大学信息科学与技术学院,广州510006
  • 相关基金:国家自然科学基金项目(61472453,61272073,61401177,61572232,U1401256,U1501252);广东省自然科学基金项目(S2013020012865);广东省科技计划基金项目(2013B010401017)
中文摘要:

大数据时代多源、异构、海量的数据正逐渐成为各种应用的主流.多源异构不可避免地会使数据出现重复,同时庞大的数据量对重复检测的效率提出了极高的要求,传统技术在大数据环境下并不能很好地对高维数据进行重复检测,就此问题展开研究,分析了传统SNM类方法的不足,将重复问题概化为一类特殊的聚类问题,利用R-树建立了高效的索引,利用聚类簇的特性减少了在R-树叶子中比较的次数,利用重复检测的Apriori性质实现了对高维数据集并行处理.实验结果表明,提出的算法能有效地提高高维数据的重复检测效率.

英文摘要:

The big data era has huge quantity of heterogeneous data from multiple sources be widely used in various domains.Data from multiple sources and of various structures make data duplication inevitable.In addition,such a large amount of data generates an increasing demand for efficient duplicate detection algorithms. Traditional approaches have difficulties in dealing with high dimensional data in big data scenarios.This paper analyses the deficiency of traditional SNM(sorted neighbour method)methods and proposes a novel approach based on clustering.An efficient indexing mechanism is first created with the help of R-tree,which is a variant of B-tree for multi-dimensional space.The proposed algorithm reduces the comparisons needed by taking advantage of the characteristics of clusters and outperforms existing duplicate detection approaches such as SNM,DCS,and DCS++.Furthermore,based on the apriori property of duplicate detection,we develop a new algorithm which can generate the duplicate candidates in parallel manner of the projection of original dataset and then use them to reduce search space of high-dimensional data.Experimental results show that this parallel approach works efficiently when high-dimensional data is encountered.This significant performance improvement suggests that it is ideal for duplicate detection for high dimensional big data.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349