位置:成果数据库 > 期刊 > 期刊详情页
用核K-means聚类和半定规划SVM实现垃圾标签检测
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]广西大学计算机与电子信息学院,南宁530004
  • 相关基金:国家自然科学基金资助项目(61063032); 国家教育部人文社会科学研究项目(11YJAZH080)
中文摘要:

提出使用核K-means聚类算法从样本集中抽取特征向量集来训练SVM,达到减少SVM规模的目的。SVM核函数的选择会影响SVM模型的分类效果,提出将多个非线性映射能力不同的核函数进行线性组合,在特征训练集上构造出组合SVM的半定规划模型,用内点法求解出最优组合系数,得到非线性映射能力更强的半定规划SVM,并用做垃圾标签检测。在UCI数据集上与双层减样支持向量机方法进行比较,实验结果表明,新的垃圾标签检测法提高了识别率,并大幅度减少了训练时间。

英文摘要:

This paper presented a method.It used kernel K-means clustering algorithm to extract the character vector set from the samples and got the optimal combinatorial coefficients of different functions to construct semi-definite programming SVM with stronger nonlinear mapping ability.Experimental results on UCI datasets show that compared with double-layer reduction method,the new method gives higher accuracy and speeds up obviously.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049