位置:成果数据库 > 期刊 > 期刊详情页
基于多传感器信息融合理论的交互式多模型算法
  • ISSN号:1000-565X
  • 期刊名称:《华南理工大学学报:自然科学版》
  • 时间:0
  • 分类:TN911.23[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]哈尔滨工程大学自动化学院,黑龙江哈尔滨150001, [2]浙江讯领科技有限公司,浙江杭州310051
  • 相关基金:国家自然科学基金资助项目(61102107,61374208)
中文摘要:

在经典的交互式多模型算法中,对似然函数的高斯近似以及概率密度函数与概率质量函数的混合计算使得所求得的模型概率仅为贝叶斯意义下的次优值.为解决此问题,基于各滤波器估计误差的相关性和多传感器最优信息融合准则,提出了一种重新加权的交互式多模型算法.该算法通过计算估计误差的互协方差阵对模型概率进行更新,在此基础上利用最优信息融合理论对各滤波器的滤波结果进行融合.理论分析及仿真结果表明:经过重新加权的交互式多模型算法较原始算法以及其他忽略误差相关性的交互式多模型的改进算法在估计精度上均有显著的提高.

英文摘要:

In the classical interacting multiple model(IMM) algorithm,because of the Gaussian approximation to the likelihood function and the confusion of probability density function and probability mass function,the obtained mode probabilities are only the approximations of probability mass,which is a suboptimal result in the sense of Bayes.In order to solve this problem,a reweighted IMM algorithm is proposed based on the correlation among the estimation errors of mode-conditioned filters and the multi-sensor optimal information fusion criterion.In this algorithm,the mode probabilities are updated by calculating the cross-covariance matrix of estimation errors,and then the filtering results are fused according to the optimal information fusion theory.Theoretical analysis and simulation results indicate that the estimation accuracy of the proposed algorithm is significantly improved in comparison with those of the classical IMM algorithm and other IMM-related algorithms which ignore the error correlation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华南理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部科技司
  • 主办单位:华南理工大学
  • 主编:李元元
  • 地址:广州市天河区五山路华南理工大学17号楼
  • 邮编:510640
  • 邮箱:journal@scut.edu.cn
  • 电话:
  • 国际标准刊号:ISSN:1000-565X
  • 国内统一刊号:ISSN:44-1251/T
  • 邮发代号:46-174
  • 获奖情况:
  • 本学报荣获1996年国家教委系统优秀科技期刊二等奖...,1999年荣获全国优秀高校自然科学学报及教育部优秀...,2001年荣获广东省优秀期刊奖和广东省优秀科技期刊...,2004年获全国高校优秀科技期刊二等奖,2006年获首届教育部优秀科技期刊奖,2008年荣获第二届教育部优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22954