蛋白质 nanocages 由于几个有益的性质是为 nanomaterials 的启发简历的制造的理想的模板。在在蛋白质 nanocages 内的 nanoparticles (NP ) 的矿化作用期间,大多数研究采用了普通策略:在蛋白质 nanocages 内的种子形成由播种 NP 生长列在后面。然而,种子形成步骤被限制为轻轻的反应条件避免损坏到蛋白质 nanocages,它可以极大地限制为 NP 生长使用的种子材料的光谱。我们提出了一条简单线路围绕如此的限制:是的 preformed NP 的封装种子经由自己组装,由外部金属层的生长列在后面。用如此的一个方法,我们在使矿物化接替了尺寸悦耳的 Au NP 和 Au@Ag 核心壳 NP (< 在直径的 10 nm ) 与在基于病毒的 NP 内的狭窄的尺寸分布猿的病毒 40。现在的线路启用 NP 的利用在蛋白质 nanocages 内为 nanomaterial 生长作为开始的种子在任何条件下面综合了。因此,它潜在地导致新奇 bioinorganic 有可定制的部件和结构的妄想的 nanomaterials。
Protein nanocages are ideal templates for the bio-inspired fabrication of nanomaterials due to several advantageous properties. During the mineralization of nanoparticles (NPs) inside protein nanocages, most studies have employed a common strategy: seed formation inside protein nanocages followed by seeded NP growth. However, the seed formation step is restricted to gentle reaction conditions to avoid damage to the protein nanocages, which may greatly limit the spectrum of seed materials used for NP growth. We put forward a simple route to circumvent such a limitation: encapsulation of a preformed NP as the seed via self-assembly, followed by the growth of an outer metal layer. Using such a method, we succeeded in mineralizing size-tunable Au NPs and Au@Ag core-shell NPs (〈10 nm in diameter) with narrow size distributions inside the virus-based NPs of simian virus 40. The present route enables the utilization of NPs synthesized under any conditions as the starting seeds for nanomaterial growth inside protein nanocages. Therefore, it potentially leads to novel bioinorganic chimeric nanomaterials with tailorable components and structures.