位置:成果数据库 > 期刊 > 期刊详情页
基于穗帽变换的TM影像水稻面积提取
  • ISSN号:1001-7216
  • 期刊名称:《中国水稻科学》
  • 时间:0
  • 分类:S127[农业科学—农业基础科学] S51[农业科学—作物学]
  • 作者机构:[1]浙江大学农业遥感与信息技术应用研究所,浙江杭州310029, [2]浙江省气象研究所,浙江杭州310029
  • 相关基金:基金项目:国家自然科学基金资助项目(40571115);科技部科技基础性工作专项资助项目(2003DEA2C010-13).
中文摘要:

利用水稻生育前期和后期两个不同时期TM影像分别进行穗帽变换生成亮度、绿度和湿度变量,并将它们合成为多时相影像,充分利用这3个具有物理意义的变量,特别是湿度变量进行水稻种植区影像分类和以水为背景的水稻面积提取,并使用亚米级GPS地面调查的数据进行分类验证。基于穗帽变换影像的分类方法有效提高了水稻面积提取精度,水稻分类的生产者精度和用户精度分别为84.30%和85.18%,这比原始合成影像数据的分类结果提高了约3个百分点;另外,总精度也由原始合成影像的74.12%提高到经过穗帽变换的78.04%。

英文摘要:

Rice cultivated area extraction is the premise of rice growth status monitoring and production estimation by remote sensing. One of the problems is the misclassification between rice and other green vegetations. In this study, two the-matic mapper (TM) images from early and late developmental stages were converted into brightness, greenness, and wetness variables using the tasseled cap transformation. And then these variables, which are associated with the important physical parameters of the land surface, were composed as multitemporal image and were fully applied to extract rice-cultivated area. The classified map was compared with the data from GPS in less than 1 meter resolution for classification validation. The results indicated that the method based on the tasseled cap transformation can extract the rice-cultivated area with relative high precision. The producers' accuracy and users' accuracy were 84.30% and 85.18% for rice, respectively, which were increased by about 3 percent point compared with the classified original images. The overall accuracy was also increased from 74.12% for the classified original image to 78.04% for the classified tasseled cap transformed image.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国水稻科学》
  • 北大核心期刊(2011版)
  • 主管单位:农业部
  • 主办单位:中国水稻研究所
  • 主编:程式华
  • 地址:杭州市体育场路359号中国水稻研究所内
  • 邮编:310006
  • 邮箱:cjrs@263.net
  • 电话:0571-63370278
  • 国际标准刊号:ISSN:1001-7216
  • 国内统一刊号:ISSN:33-1146/S
  • 邮发代号:32-94
  • 获奖情况:
  • 首届全国科技期刊评比二等奖,第二届全国优秀科技期刊评比三等奖,农业部浙江省优秀期刊,国家期刊奖百种重点期刊,百种中国杰出学术期刊,中国精品科技期刊,中国国际影响力优秀学术期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,美国剑桥科学文摘,美国生物科学数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17826