位置:成果数据库 > 期刊 > 期刊详情页
基于聚类改进的KNN文本分类算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391.1[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:中南大学软件学院,长沙410075
  • 相关基金:国家自然科学基金资助项目(61379057,61309001,61379110,61103202,61301136);国家教育部博士点基金优先发展领域课题(20120162130008)
中文摘要:

传统的KNN文本分类算法是一种无监督的、无参数的、简单的、较流行的且容易实现的分类算法。但是KNN算法在处理文本分类的过程中需要不断地计算待测文本与样本的相似度,当文本数量更大时,算法的效率就会更差。为了提高传统KNN算法在文本分类中的效率,提出一种基于聚类的改进KNN算法。算法开始之前采用改进χ~2统计量方法进行文本特征提取,再依据聚类方法将文本集聚类成几个簇,最后利用改进的KNN方法对簇类进行文本分类。实验对比与分析结果表明,该方法可以较好地进行文本分类。

英文摘要:

The traditional KNN text classification algorithm is a classification method which is an unsupervised, no parame- ters, simply, more popular and it's easily to achieve. But it need to constantly calculate the similarity between the test and sample text sets, when larger amounts of the text, the efficiency will be much more worse. To improve the classification effi- ciency of the traditional KNN algorithm, this paper proposed an improved KNN algorithm based on the clustering. Before this algorithm, it used an improved X2 statistics way to extract the feature of texts, then making the text sets into several clusters based on clustering method, at last it used the improved KNN way to classify the texts. The experiment and analysis results show that this algorithm can better deal with the text classification.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049