S*表示所有在单位圆盘D内解析且满足条件f(0)=,f(0)-1=0的星形函数族,K表示所有在D内解析且满足条件f(0)=f’(0)-1=0的凸函数族,P表示所有在D内解析且满足条件p(0)=1,Rep(z)〉0的函数族.设Pn={p(z):p(z)=1+anz^n+an+1z^n_1+…∈P},Sn*={f(z):f(z)=z+anz^n+an+1z^n+1+…∈S*),Kn={f(z):f(z)=z+anz^n+an+1z^n+1+…∈K}.Lsn*={g(z)=lnf(z)/z,f∈Sn*},其中对数函数取使得ln1=0的那个单值解析分支.该文研究了函数族Sn*,Kn和Lsn*的性质,找出了解析函数族Lsn*的极值点与支撑点,并对Sn*与Kn的极值点和支撑点作了一些探讨.
Let A be the class of functions, which are analytic in the unit disc D = {z : |z| 〈 1}, with with f(0) = f'(0) - 1 = 0. Let S* be the set of starlike functions, S* = {f(z) ∈A, Rezf'(z)/f(z)〉 0,z∈D}. Let K be the set of convex functions, K = {f(z) ∈ ,A, Re(1 + zf″(z)/f'(z)〉 0, z ∈D},P denotes the class of functions p(z), which are analytic in D and satisfy p(0) = 1, Rep(z) 〉 0. Let Pn = {p(z):p(z) = 1 +anz^n +an+1z^n+1 +…∈P}, Sn* = {f(z) : f(z) = z +anz^n +an+1z^n+1 +…∈ S*}, Kn={f(z) : f(z) = z+anz^n+an+1z^n+1+…∈ K}. Ls* = {g(z) = ln f(z)/z , f∈ Sn*}, where the logarithmic function satisfy in 1 =0. In this article the author investigated the properties of the classes Sn*, Kn and Lsn*. The author obstained the extreme points and support points of Ls*, and discussed the extreme points and support points of Sn* and Kn.