Banach空间盛上的全体有界线性算子表示为B(X)对算子A∈B(X防),左乘算子LA定义为LA(X)=AX,X∈B(X)。本文讨论了左乘算子LA厶的约化最小模与算子A的约化最小模的关系,得到γ(LA)≤γ(A)。特别地,对Hilbert空间上的算子A,证明了γ(LA)=γ(A)成立。
B(X) denotes the sets of all bounded linear operators defined on X. For A ∈ B(X), the left multiplicative operator LA on B(X) is defined by LA (X) = AX, X∈(X). Relationship between the reduced minimum modulus of the left multiplicative operator LA and of an operator A is discussed. γ(LA )≤γ(A) is obtained. Particularly, for an operators A on a Hilbert space, γ( LA ) = γ( A ) .