为克服聚类算法对初始聚类中心选取敏感这一缺点,结合文本样本集中各个词所处位置不同而具有不同重要程度(权值)可客观反映文本数据本来特征的特点,提出一个考虑样本点分布密度优选初始聚类中心的最大熵核FCM算法(WKMEFCM)。实验结果表明,该算法与C均值方法、模糊C均值方法 FCM、最大熵核FCM相比,其聚类结果更加稳定、准确,聚类效果更好。
To overcome the weakness of the sensitivity of clustering algorithms in selecting initial clustering centers,combining that words in text sample set locating in different positions have different importance(weights)and may reflect native characteristics of text data objectively,a maximum entropy kernel fuzzy text clustering algorithm(WKMEFCM)was proposed by optimally choosing initial centers based on sample distribution density.Experimental results show that the algorithm is more stable,accurate and effective compared with the C-means clustering algorithm,fuzzy C-means clustering algorithm FCM and maximal entropy and kernel FCM algorithm.