以Mg(NO3)2、Y(NO3)3和La(NO3)3为前驱体,采用液相前驱体浸渗工艺将添加剂MgO、Y2O3和La2O3同时引入到预烧氧化铝坯体中,在1830℃、H2气氛下保温2h烧结制备透明多晶氧化铝陶瓷。利用扫描电子显微镜和紫外一可见分光光度计对透明多晶氧化铝陶瓷的显微结构及直线透光率进行表征。结果表明:液相前驱体浸渗工艺提高了添加剂分布的均匀性,采用该工艺制备的透明多晶氧化铝陶瓷显微结构均匀,晶粒尺寸为20~50μm,在波长300~800nm内最高直线透光率达38.7%(λ=800nm,厚度为0.8mm);而采用传统湿法球磨工艺得到的透明多晶氧化铝陶瓷晶粒尺寸大小不均,在晶界及晶粒内存有残留气孔,最高直线透光率仅为12.3%m=800nm,厚度为0.8mm)。通过液相前驱体浸渗工艺引入添加剂显著提高了透明多晶氧化铝陶瓷的直线透光率。
Additives of MgO, Y203, La2Os for fabrication of translucent polycrystaUine alumina (TPCA) ceramics were introduced by infiltration technique into pre-sintered alumina green bodies in the form of Mg(NO3)2, Y(NO3)3, La(NO3)3 aqueous precursor solutions and sintered in H2 atmosphere at temperature of 1 830 ℃ for 2 h. Microstructure and real in-line transmission of TPCA ceramics were characterized by scanning electron microscope and UV-visible spectrophotometer. The results indicated that the homogeneity of the introduced additives was enhanced through infiltration technology, compared with the conventional ball-milling method. With high micro-structural homogeneity and grain size in 20-50 μm, samples prepared by infiltration reached the highest real in-line transmission of 38.7% (λ = 800 nm, sample thickness of 0.8 mm) from wavelength of 300 to 800 nm. However, the highest real in-line transmission of TPCA ceramics prepared by conventional ball-milling method was only 12.3% (2 = 800 nm, sample thickness of 0.8 mm) due to the inhomogeneous microstructure and obvious residual pores. The real in-line transmission of TPCA ceramics can be greatly improved through introducing additives by infiltration technique.