为了研究煤系泥页岩黏土矿物对孔隙结构和甲烷吸附性能的影响,本文采用甲烷等温吸附试验、XRD实验和液氮吸附试验等方法对禹州煤田煤系泥页岩的矿物组成、孔隙结构及甲烷吸附性能进行了研究。结果表明,黏土矿物含量与比表面积和孔体积之间呈正相关关系。研究区泥页岩样品的甲烷最大吸附量介于0.2~3.39m3/t,平均值约为1.0m3/t。黏土矿物对储层孔隙的影响主要发生在中孔范围;高岭石和伊/蒙混层提供了主要的孔比表面积和孔体积;高岭石对泥页岩的吸附性能具有一定的促进作用。
In order to study the effect of clay minerals of coal-bearing shale on the pore structure and adsorption properties, methane isothermal adsorption experiment, XRD experiment, liquid nitrogen adsorption experiment and other methods were adopted to study the mineral composition, pore structure and methane adsorption properties of coal-bearing shale in Yuzhou coalfield. The results showed that clay mineral content had a positive correlation with specific surface area and total pore volume. The maximum methane adsorption value of shale sample was 0. 2--3.39 ma/t and 1.0 m3/t on average. The effect of clay minerals on the pore of shale gas reservoirs mainly reflected in mesopores; the most pore specific surface area and pore volume were from kaolinite and I/S mixed-layer in clay minerals; meanwhile, kaolinite performed a certain promoting role in adsorption properties of shale.