有关指数型缺项整插值算子的研究已经有了很多的成果,它在经典空间中的逼近问题前人已经做了大量的研究,该算子在空间的收敛性和饱和性问题已经有了深刻的结论.在此基础上,利用泛函的定义首次研究了在Besov空间中,这类指数型缺项整插值算子的逼近和饱和问题,确定了逼近的饱和类与饱和阶.
The K functional method is used in the paper which first describes the approximation and saturation problem by certain entire interpolation operators in the Besov space,and the saturation class and the saturation order of approximation are determined.