【目的】以高空间分辨率Quickbird遥感影像作为管理分区划分的数据源,结合地面土壤养分采样数据进行管理分区划分研究。【方法】在对数据进行空间变异分析的基础上,采用3种不同的分区方式对研究区进行田块尺度内管理分区的划分:1)利用土壤养分数据划分管理分区;2)利用冬小麦遥感长势信息划分管理分区;3)利用土壤养分信息结合冬小麦长势信息划分管理分区。【结果】与划分前的地块变异情况相比,利用土壤养分数据进行管理分区划分的方法,在很大程度上提高了不同分区内土壤的均一度,而光谱指数和产量的变异系数也有所降低;利用光谱数据进行管理分区划分,土壤养分的变异系数总体上有所减低,但降低的幅度小于利用土壤养分数据划分的管理分区,光谱指数和产量的变异系数都有大幅度降低;利用土壤数据结合光谱数据进行管理分区划分,土壤养分和光谱指数以及产量的变异系数普遍降低。【结论】在划分管理分区时,综合考虑土壤养分和光谱数据的空间变异情况是最佳选择,但当缺乏土壤养分数据时,利用遥感影像进行管理分区的划分也是可行的。
【Objective】This study tries use high-resolution multi-spectral remote sensing data-Quickbird imagery to generate within-field management zone.【Method】After spatial analysis of soil nutrient sampling data,three methods of management zone generating were evaluated in this study:1)using soil nutrient sampling data to generate management zone map;2)using crop remote sensing information to generate management zone map;3)using soil nutrient data and crop remote sensing information to generate management zone map.【Result】Results indicate that using remotely sensed data and soil property data reduced the variance of soil property and spectral parameters within management zone compared with field scale soil property variability.【Conclusion】Results show that there is a feasibility to use remotely sensed data to generate management zone.