位置:成果数据库 > 期刊 > 期刊详情页
一种大规模高维数据集的高效聚类算法
  • ISSN号:0255-8297
  • 期刊名称:《应用科学学报》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东南大学计算机科学与工程系,江苏南京210096
  • 相关基金:国家自然科学基金(70371015);教育部高等学校博士学科点专项科研基金(20040286009)资助项目
中文摘要:

大规模高维数据集的聚类算法已成为当前聚类研究的热点,由于高维的原因,聚类往往隐藏在数据空间的某些子空间中,传统的聚类算法无法获得有意义的聚类结果.此外,高维数据中含有的大量的随机噪声也会带来额外的效率问题.为了解决以上问题,该文在CLIQUE算法的基础上提出了一种基于最优区间分割和数据集划分的聚类算法-OpCluster,并使用仿真数据对该算法加以验证,实验结果表明,OpCluster对大规模高维数据集具有很好的聚类效果.

英文摘要:

Clustering large data set of high dimensionality has always been a serious challenge for clustering algorithms. Traditional clustering algorithms often fail to detect meaningful clusters because of the high dimensionality and inherently sparse feature space of most real-world data sets. Nevertheless, the data sets often contain clusters hidden in various subspaces of the original feature space. In addition, high-dimensional data often contain a significant amount of noise which causes additional effectiveness problems. To overcome these problems, a new algorithm based on CLIQUE, named OpCluster, is proposed. A set of experiments on a synthetic dataset demonstrate the effectiveness and efficiency of the new approach.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用科学学报》
  • 中国科技核心期刊
  • 主管单位:上海市教育委员会
  • 主办单位:上海大学 中国科学院上海技术物理研究所
  • 主编:王延云
  • 地址:上海市上大路99号123信箱
  • 邮编:200444
  • 邮箱:yykxxb@departmenl.shu.edu.cn
  • 电话:021-66131736
  • 国际标准刊号:ISSN:0255-8297
  • 国内统一刊号:ISSN:31-1404/N
  • 邮发代号:4-821
  • 获奖情况:
  • 首届中国高校优秀科技期刊,第2届中国高校优秀科技期刊奖,全国高校优秀科技期刊,中国科技期刊方阵双效期刊,上海市优秀科技期刊,首届《CAJ-CD》执行优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:4747