位置:成果数据库 > 期刊 > 期刊详情页
改进蚁群算法的局部信息动态路径规划
  • ISSN号:1671-4598
  • 期刊名称:《计算机测量与控制》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]昆明理工大学化学工程学院,昆明650500, [2]昆明理工大学国土资源工程学院,昆明650093
  • 相关基金:国家自然科学基金(61364002);云南省教育厅科学研究基金(2016YJS020).
中文摘要:

针对传统蚁群算法收敛速度慢、对动态路径变化适应性低的局限性,提出了一种基于局部信息获取策略的动态改进型蚁群算法.该算法利用局部信息获取策略,进行最优局部目标点的获取,然后调用改进蚁群算法获取局部区域内的最优路径,再重复循环获取新的最优局部目标点,直到找到全局目标点;与此同时,将提出的改进型蚁群算法应用于动态路径规划中的路径寻优与避障,仿真结果表明:提出的算法在具有与传统蚁群算法相当的路径优化效果的同时,能够有效适应障碍变化、大大提高了路径规划的收敛速度.

英文摘要:

Considering the limitation of traditional ant colony algorithm's slowish convergence and bad self-adaptability to dynamic path change,a dynamic improved ant colony algorithm based on local information acquisition strategy is proposed in this paper.Firstly,The local information acquisition strategy is used to obtain the optimal local target point.Then,the improved ant colony algorithm is called to obtain the optimal path in the local region.And the new optimal local target point of the neighbor region is obtained by repeating the loop until the global target point is found.Moreover,the improved ant colony algorithm is applied to the path optimization and obstacle avoidance in dynamic path planning.The simulation results show that the new algorithm proposed not only has considerable path optimization performance compared with the traditional ant colony one,but also has self-adaptive capacity faced with time-vary obstacles and faster convergence speed.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机测量与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国计算机自动测量与控制技术协会
  • 主编:苟永明
  • 地址:北京海淀区阜成路甲8号中国航天大厦405
  • 邮编:100048
  • 邮箱:ly@chinamca.com
  • 电话:010-68371578 68371556
  • 国际标准刊号:ISSN:1671-4598
  • 国内统一刊号:ISSN:11-4762/TP
  • 邮发代号:82-16
  • 获奖情况:
  • 中国学术期刊综合评价数据库来源期刊,中国科技论文统计源期刊,“国家期刊奖百种重点期刊”
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:27924