位置:成果数据库 > 期刊 > 期刊详情页
基于相应簇回声状态网络静态分类方法
  • ISSN号:0372-2112
  • 期刊名称:《电子学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学自动化测试与控制研究所,黑龙江哈尔滨150080
  • 相关基金:教育部高等学校博士学科点专项科研基金(No.20092302110013);教育部新世纪优秀人才支持计划(No.NCET-10-0062)
中文摘要:

借鉴模仿哺乳动物大脑皮层分簇结构的复杂网络拓扑结构,提出一种基于相应簇储备池回声状态网络的分类方法.将时间窗函数机制引入到回声状态网络储备池的构建中,利用具体问题中需分类数据的类别数量,生成具有对应分簇数目的储备池,以期提高分类精度.基于标准数据集和模拟电路故障诊断的实验验证结果表明,本文方法与标准回声状态网络等方法相比具有更高的分类精度.

英文摘要:

A classification method using echo state networks(ESNs) with corresponding clusters is proposed,which is inspired by complex network topologies imitating cortical networks of the mammalian brain.The time windows functions are adopted to construct multiple-cluster reservoir.The number of clusters corresponds with the number of classes in specific classification problems to improve the classification accuracy.Experimental results based on the standard datasets and analog circuit fault diagnosis show that the proposed method outperforms the original echo state networks.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:郝跃
  • 地址:北京165信箱
  • 邮编:100036
  • 邮箱:new@ejournal.org.cn
  • 电话:010-68279116 68285082
  • 国际标准刊号:ISSN:0372-2112
  • 国内统一刊号:ISSN:11-2087/TN
  • 邮发代号:2-891
  • 获奖情况:
  • 2000年获国家期刊奖,2000年获国家自然科学基金志项基金支持,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:57611