以值分布理论为工具,研究了整函数f的辐角分布,在假设f满足条件i(f)=p(0<p<∞),σp(f)=σ>0时,证明了f必存在从原点出发的一条半直线B:argz=θ0(0≤θ0<2π),使得对任意ε>0有^-limr→∞log^[p]{n(r,θ0,ε,f=α)+n(r,θ0,ε,f^(k)=β)}/log r=σ,其中α,β为任意有穷复数,且β不为零,k为任意正整数,并将结果推广到f是亚纯函数的情形.
In this paper, we research the argument distribution of entire function f, if f satisfies i(f)=p(0〈p〈∞),σp(f)=σ〉0 , then we have a half straight line B:argz=θ0(0≤θ0〈2π) from the origin , for any ε〉 0 the equality ^-limr→∞log^[p]{n(r,θ0,ε,f=α)+n(r,θ0,ε,f^(k)=β)}/log r=σ is true, which α, β are any finite complex numbers and β ≠ 0, k is a positive integer. We generalize this result when f is meromorphic function too.