研究了一类非线性Choquard方程-△u(x)+V(x)u(x)=a(x)∫R3a(y)|u(y)|u(y)/|x-y|μdy| u(x)|p-2u(x)解的存在性.其中,o<μ <3,6-μ/3<p<6-μ.在位势函数V(x)及函数a(x),a(y)满足适当条件下,运用变分方法证明了方程非平凡弱解的存在性.
It was discussed the existence of solution for a class of nonlinear Choquard equation △u(x)+V(x)u(x)=a(x)∫R3a(y)|u(y)|u(y)/|x-y|μdy| u(x)|p-2u(x)whereo〈μ 〈3,6-μ/3〈p〈6-μ.Under Suitable assumptions on the potential V{x} and function a lx},a { y}, the existence of the nontrivial solution was proved via variational method.