位置:成果数据库 > 期刊 > 期刊详情页
基于联合特征向量的自动数字调制识别算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TN971.1[电子电信—信号与信息处理;电子电信—信息与通信工程]
  • 作者机构:[1]华中科技大学电子与信息工程系,武汉430074
  • 相关基金:国家自然科学基金资助项目(60475024)
中文摘要:

在高信噪比处理域构造新的用于调制识别的高阶统计量幅值特征,与传统特征相比保留了更多的分类信息,适合干扰较大多种调制模式并存的环境。基于联合特征向量有效提高了识别性能,用窗口平滑抑制截获信号中的噪声,对识别器输入特征向量样本规范化以提高处理速度。分别基于欧氏距离分类方法和改进算法的神经网络识别器进行仿真实验,证明了采用联合特征向量和优化方法在低信噪比干扰更大的信道条件下能区分更多的调制类型(MASK、MPSK、MFSK、MQAM),且平均调制识别率提高20%~30%,算法效率也得到明显提高。

英文摘要:

In the high SNR processing domain, proposed novel high order statistic amplitude features and optimization method to preserve more classification information for various modulation types. The method based on the combined feature vector improved the algorithm performance compared to conventional features. In addition, adopted linear smoothing of the intercepted signal and normalization of input feature vector to restrain the noise and reduce the training time. Based on the Euclidean distance classification method and modified neural network recognizer, the simulation results verify the novel feature vector and optimization improve the average probability of correct classification by about 30% for more modulation types ( MASK, MPSK, MFSK, MQAM) at low SNR with greater interference. The algorithm efficiency is also improved markedly.

同期刊论文项目
期刊论文 61 会议论文 7
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049