研究了并行磁共振成像图像重建的范数优化问题.首先,通过分析目前常用的2种并行磁共振成像重建算法——GRAPPA算法和SENSE算法,归纳出它们在重建过程中所用的动态数学模型,描述成形如矩阵方程Ax=b的形式;然后,将范数优化引入到重建算法中的建模及模型参数估计中,通过采用不同矩阵范数意义下的目标函数,即在不同的范数空间中重建图像,提高优化的自由度和算法设计的灵活性;最后,通过仿真对范数优化后的重建图像质量进行分析,说明不同范数优化对重建图像的影响,并探讨了范数优化中相关参数及优化目标函数的选择问题.