位置:成果数据库 > 期刊 > 期刊详情页
In-situ structure reconstitution of NiCo2Px for enhanced electrochemical water oxidation
  • ISSN号:1001-7011
  • 期刊名称:《黑龙江大学自然科学学报》
  • 时间:0
  • 分类:TQ116.21[化学工程—无机化工]
  • 作者机构:Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry Ministry of Education of the People’s Republic of China, Tianjin Normal University, Key Laboratory of Functional Inorganic Material Chemistry,Ministry of Education of the People’s Republic of China,School of Chemistry and Materials Science,Heilongjiang University
  • 相关基金:supported by the National Natural Science Foundation of China (21631004, 21371053,and 21573062);the Science Fund for Distinguished Young Scholar of Heilongjiang University (JCL201501);the Fundamental Research Funds for the Heilongjiang University of Heilongjiang Province of China(HDRCCX2016202)
中文摘要:

Gaining insight into the structure evolution of transition-metal phosphides during anodic oxidation is significant to understand their oxygen evolution reaction(OER) mechanism, and then design highefficiency transition metal-based catalysts. Herein, NiCo2Px nanowires(NWs) vertically grown on Ni foam were adopted as the target to explore the in-situ morphology and chemical component reconstitution during the anodic oxidation. The major factors causing the transformation from NiCo2Px into the hierarchical NiCo2Px@CoNi(OOH)x NWs are two competing reactions: the dissolution of NiCo2Px NWs and the oxidative re-deposition of dissolved Co2+ and Ni2+ ions, which is based primarily on the anodic bias applied on NiCo2 Px NWs. The well balance of above competing reactions, and local pH on the surface of NiCo2Px NW modulated by the anodic oxidation can serve to control the anodic electrodeposition and rearrangement of metal ions on the surface of NiCo2Px NWs, and the immediate conversion into CoNi(OOH)x. Consequently, the regular hexagonal CoNi(OOH)x nanosheets grew around NiCo2Px NWs.Benefiting from the active catalytic sites on the surface and the sufficient conductivity, the resultant NiCo2Px@CoNi(OOH)x arrays also display good OER activity, in terms of the fast kinetics process, the high energy conversion efficiency, especially the excellent durability. The strategy of in-situ structure reconstitution by electrochemical reaction described here offers a reliable and valid way to construct the highly active systems for various electrocatalytic applications.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《黑龙江大学自然科学学报》
  • 北大核心期刊(2011版)
  • 主管单位:黑龙江省教育厅
  • 主办单位:黑龙江大学
  • 主编:霍丽华
  • 地址:哈尔滨市学府路74号
  • 邮编:150080
  • 邮箱:hdxb@vip.sohu.com
  • 电话:0451-86608818
  • 国际标准刊号:ISSN:1001-7011
  • 国内统一刊号:ISSN:23-1181/N
  • 邮发代号:14-114
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:4204