引进五阶线性色散项方程K(m,n,1),用逆算符方法得到了sin型多重compacton解(紧孤立波解);利用齐次平衡法得到了K(2,2,1)方程的Backlund变换,并且得到一些新的孤立波解;最后研究了sin型多重compacton解的线性稳定性.
Introducing K(m, n, 1) equation with linear fifth-order dispersion, the authors obtain sin-compacton solutions by Adomian decomposition method. Using the homogeneous balance(HB) method, the authors obtain a Backlund transformation of a special equation K(2, 2, 1) to determine some new solitary solutions of the equation. The authors finally show the linear stability of all obtained sin-typed multi-compacton solutions.