为减小电感惯性模态期间电感电流下降对下一周期脉冲的影响,根据伪连续导电模式(Pseudo Continuous Conduction Mode,PCCM)Buck-Boost变换器的工作特点,提出一种新的脉冲序列(Pulse Train,PT)控制策略。控制策略中包含两个控制变量,使控制器根据不同能量的电压控制脉冲产生不同的电流控制脉冲。详细分析了新型PT控制策略下PCCM Buck-Boost变换器的工作过程,给出了高低能量电压控制脉冲比。仿真与实验结果验证了新型控制策略的可行性及理论分析的正确性。
In order to reduce the influence of the pulse of next cycle during the freewheel switch, this paper puts forward a novel control strategy of pulse train (PT), which is based on the working character of the pseudo continuous conduction mode (PCCM) Buck-Boost converter. The strategy contains two control variables, which makes the controller produce different current-controlled pulses depending on different-energy voltage-controller pulses. This paper depicts the working process of the PCCM Buck-Boost converter under this new control strategy in detail and presents the ratio of high-energy and low-energy voltage-controlled pulses. Simulation and experimental results verify the feasibility of the new control scheme and the correctness of the theoretical analysis.