采集了上海市石洞口地区2010年春季不同粒径大气颗粒物样品,使用ICP-AES和FESEM技术分析了颗粒物的化学组成和微观特征,比较了不同粒径的大气颗粒物与3种工业纳米颗粒物的生物活性.结果表明,在染毒剂量为25、50、100和200μg.mL-1时,大气颗粒物水溶组分和不溶组分及工业纳米颗粒均可以抑制A549细胞生长活性并能诱导细胞产生活性氧(ROS),且大气细颗粒水溶组分生物活性最强,在上述染毒剂量下对细胞生长活性的抑制率分别达到13.31%、18.15%、20.43%和23.78%.在纳米尺度的颗粒物染毒组分中,纳米NiO的生物活性最强,在上述染毒剂量下对细胞生长活性的抑制率分别达到11.81%、15.12%、17.62%和19.44%.因此,大气细颗粒物水溶组分是最主要的毒性成分.
Ambient size-resolved particles in Shanghai atmosphere were collected at Shi Dong Kou sampling site during 2010 spring.Inductively coupled plasma atomic emission spectroscopy(ICP-AES) and field emission scanning electron microscopy(FESEM) were employed to investigate chemical elements and microscopic characterization of the ambient particles.Bioreactivity caused by the ambient particles and three kinds of engineered nano particles,NiO,ZnO and CeO2,was compared.Our results demonstrated that growth activity of A549 decreased and their intracellular ROS production intensity increased after the cell exposure to particle solution with different dosage(25,50,100 and 200 μg·mL-1).The lowest cell survival ratio was caused by soluble fraction of ambient fine particles,inhibition of cell viability were 13.31%,18.15%,20.43%,23.78% respectively.However,the most toxic components among the ultrafine ambient particles and engineered nano particles was NiO,inhibition of cell viability were 11.81%,15.12%,17.62%,19.44% respectively.From our results,we can conclude that the water-soluble fractions of the ambient fine particles are the most cytotoxic components among the measured particles.