传统的六氟化硫电离层释放效应研究,一般建立的是点源释放模型,仿真结果精度有限.本文开展了电离层中释放六氟化硫的三维精细效应研究,在释放物扩散方程中加入了运载器飞行速度和姿态、释放物释放速度和流量、热层风场等参量对释放物扩散过程的影响;在等离子体扩散方程中考虑了地磁倾角和沿场扩散项对人工扰动结构等关键参数的影响,将二维等离子体扩散方程扩展到三维.同时,采用射线追踪方法,研究电离层人工扰动结构对短波传播路径的影响.本文的研究结果对研究电离层的动力学过程、电离层不均匀体的生成机制和演化规律有重要意义.
The traditional simulation model of sulfur hexafluoride ionosphere release is a simple point-source model and the simulation precision is not high. The three-dimensional refined simulation model of rocket SF6 release is established in this paper, in which the rocket pose and velocity, gas injection velocity and flow, and wind velocity are all taken into account in the diffusion equation. Meanwhile, the influences of geomagnetic inclination and the field diffusion on artificial disturbance form are considered in the plasma diffusion equation, and the two-dimensional plasma diffusion equation is extended to three-dimensional case. The ray tracing method is used to study the influence of ionospheric artificial disturbance on the short wave propagation path. The research results of the ionosphere kinetics process, ionospheric uneven body generation mechanism and evolution are of great significance.