位置:成果数据库 > 期刊 > 期刊详情页
Multifunctional silicon-based light emitting device in standard complementary metal-oxide-semiconductor technology
  • ISSN号:1674-1056
  • 期刊名称:《中国物理B:英文版》
  • 时间:0
  • 分类:TN3[电子电信—物理电子学] TM862[电气工程—高电压与绝缘技术]
  • 作者机构:[1]State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 相关基金:Project supported by the National Natural Science Foundation of China (Grant Nos. 60536030, 61036002, 60776024, 60877035 and 61036009) and National High Technology Research and Development Program of China (Grant Nos. 2007AA04Z329 and 2007AA04Z254).
中文摘要:

A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology.This device is capable of versatile working modes:it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V.An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode.Furthermore,when the gate oxide is broken down,NIR light is emitted from the polysilicon/oxide/silicon structure.Optoelectronic characteristics of the device working in different modes are measured and compared.The mechanisms behind these different emissions are explored.

英文摘要:

A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.

同期刊论文项目
期刊论文 13 会议论文 6 专利 1
同项目期刊论文
期刊信息
  • 《中国物理B:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国物理学会和中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京 中关村 中国科学院物理研究所内
  • 邮编:100080
  • 邮箱:
  • 电话:010-82649026 82649519
  • 国际标准刊号:ISSN:1674-1056
  • 国内统一刊号:ISSN:11-5639/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:406