非水系二次锂-氧电池(NRLOB)在当前所研发的二次电池中理论能量密度最高,但存在循环性能差,充、放电电流密度低等显著问题;这些问题主要同其氧正极上的电化学反应相关,关键在于过氧化锂Li2O2可逆生成、分解反应能否在较高的速率下连续地进行。本文综述了近年来NRLOB正极电化学反应机理、正极碳材料、催化剂和电极结构、电解液分解导致电极副反应等方面的研究现状;归纳了今后需要进一步研究的主要问题。
Non-aqueous rechargeable lithium-oxygen battery (NRLOB) possesses the highest theoretical energy density among all secondary battery systems. However, there are some tough problems for the NRLOB development,which include poor cyclability and low charge-discharge current densities of the battery. These problems are chiefly relating to the electrochemical reactions on the surface of the porous oxygen positive electrode. The key issue should be to ensure reversible decomposition and formation of Li202 to proceed sustainedly at higher reaction rates. In this article, the fundamental understanding of oxygen electrochemical mechanisms in non-aqueous electrolytes, research status of carbon materials and catalysts of the positive electrode, electrode structures and side reactions arising from electrolyte degradation are reviewed. The main issues for further research are summed up.