位置:成果数据库 > 期刊 > 期刊详情页
新疆艾比湖湿地土壤有机碳含量的光谱测定方法对比
  • ISSN号:1002-6819
  • 期刊名称:《农业工程学报》
  • 时间:0
  • 分类:S127[农业科学—农业基础科学]
  • 作者机构:[1]新疆大学资源与环境科学学院,乌鲁木齐830046, [2]新疆大学绿洲生态教育部重点实验室,乌鲁木齐830046
  • 相关基金:国家自然科学基金项目(U1303381,41261090,41130531);新疆大学优秀博士研究生创新项目(XJUBSCX-2012026).
中文摘要:

干旱半干旱地区湿地土壤中的有机碳是影响土壤质量,制约植物生长的重要因素之一,其含量的变化会影响生态系统的安全和稳定。为快速估测湿地土壤有机碳含量,在新疆艾比湖湿地保护区采集140个荒漠土壤样品,利用土壤可见/近红外光谱数据以及化学分析获取的土壤有机碳数据,在对土壤原始光谱反射率进行卷积平滑的基础上,获取了一阶微分、倒数对数一阶微分2种光谱预处理指标,采用蚁群-区间偏最小二乘法、基于支持向量机的回归特征消去法,选择土壤有机碳含量近红外光谱特征波长,在此基础上构建土壤有机碳含量偏最小二乘回归、支持向量回归模型。结果表明:1)利用原始一阶微分建立的模型,预测能力优于倒数对数一阶微分建立的模型。2)4种建模结果比较显示,利用原始一阶微分经基于支持向量机的回归特征消去法进行特征变量选择后建立的土壤有机碳含量模型,预测精度最高。训练集的相关系数以及均方根误差分别为0.9687、0.158%;测试集的相关系数和均方根误差分别为0.9091以及0.268%。因此,经过卷积平滑以及一阶微分预处理、并利用基于支持向量机的回归特征消去法建立的模型具有较高的预测精度和较好的稳健性,可以作为有效手段估算荒漠湿地土壤有机碳含量。

英文摘要:

Soil organic carbon (SOC) is a critical soil property that has profound impact on soil quality and plant growth. It is involved in soil structural formation and atmospheric carbon sequestration. This is especially true in the arid and semi-arid regions. Accurately detecting SOC is an important issue. Traditionally, SOC is limited to laboratory determination using the techniques such as wet or dry combustion, ion sensing electrodes, loss on ignition, or via chemical assays. Yet those traditional approaches often involve expensive testing materials, time-consuming sample preparation and production of excessive environmental pollutants. An approach which can quantify SOC content with time and cost savings is needed. With 140 soil samples acquired from the Ebinur Lake wetland protection area in Xinjiang, China, this research attempts to apply 2 algorithms in hyperspectral data mining, namely, the ant colony optimization – interval partial least squares (ACO-iPLS) and recursive feature elimination – support vector machine (SVM-RFE) to improve the estimation accuracy of SOC content using the visible and near-infrared (VIS/NIR) spectroscopy of soils (350-2500 nm) in laboratory. After convolution smoothing (S-G), 2 common spectra pre-processing methods, namely, first order differential and first order differential of the logarithm of inverse, are applied in the hyperspectral data to extract the feature wavelengths. Results indicate that the feature wavelengths pertaining to SOC mainly are located within 1786-1929 nm with ACO-iPLS and 745-910, 1677, 1755, and 1911-2254 nm with SVM-RFE. With the extracted feature wavelengths, the ensuing models with the same 2 approaches are established with the half of the samples (70 soil samples) as training set and the other half (70 soil samples) as testing set. The results show that the spectra processed with the combination of the S-G and first order with reflectance perform much better than the logarithm of first order differential of the logarit

同期刊论文项目
期刊论文 62
同项目期刊论文
期刊信息
  • 《农业工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业工程学会
  • 主编:朱明
  • 地址:北京朝阳区麦子店街41号
  • 邮编:100125
  • 邮箱:tcsae@tcsae.org
  • 电话:010-59197076 59197077 59197078
  • 国际标准刊号:ISSN:1002-6819
  • 国内统一刊号:ISSN:11-2047/S
  • 邮发代号:18-57
  • 获奖情况:
  • 百种中国杰出学术期刊,中国精品科技期刊,中国科协精品科技期刊工程项目期刊,RCCSE中国权威学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:93231