MapReduce计算场景下,复杂的大数据挖掘类算法通常需要多个MapReduce作业协作完成,但多个作业之间严重的冗余磁盘读写及重复的资源申请操作,使得算法的性能严重降低。为提高Item Based推荐算法的计算效率,首先对MapReduce平台下Item Based协同过滤算法存在的性能问题进行了分析;在此基础上利用Spark迭代计算及内存计算上的优势提高算法的执行效率,并实现了基于Spark平台的Item Based推荐算法。实验结果表明:当集群节点规模分别为10与20时,算法在Spark中的运行时间分别只有MapReduce中的25.6%及30.8%,Spark平台下的算法相比MapReduce平台,执行效率整体提高3倍以上。
Under MapReduce computing scenarios, complex data mining algorithms typically require multiple MapReduce jobs' collaboration process to compete the task. However, serious redundant disk read and write and repeat resource request operations among multiple MapReduce jobs seriously degrade the performance of the algorithm under MapReduce. To improve the computational efficiency of ItemBased recommendation algorithm, firstly, the performance issues of the hemBased collaborative filtering algorithm under MapReduce platform were analyzed. Secondly, the execution efficiency of the algorithm was improved by taking advantage of Spark's performance superiority on iterative computation and memory computing, and the ItemBased collaborative filtering algorithm under Spark platform was implemented. The experimental results show that, when the size of the cluster nodes is 10 and 20, the running time of the algorithm in Spark is only 25.6% and 30.8% of that in MapReduce. The algorithm's overall computing efficiency of Spark platform improves more than 3 times compared with that of MapReduce platform.