位置:成果数据库 > 期刊 > 期刊详情页
基于Spark的ItemBased推荐算法性能优化
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP393.09[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]新疆财经大学统计与信息学院,乌鲁木齐830012, [2]新疆医科大学医学工程技术学院,乌鲁木齐830011, [3]新疆大学信息科学与工程学院,乌鲁木齐830008, [4]清华大学软件学院,北京100084
  • 相关基金:国家自然科学基金资助项目(61562078,61262088);新疆维吾尔自治区自然科学基金资助项目(2016D018014).
中文摘要:

MapReduce计算场景下,复杂的大数据挖掘类算法通常需要多个MapReduce作业协作完成,但多个作业之间严重的冗余磁盘读写及重复的资源申请操作,使得算法的性能严重降低。为提高Item Based推荐算法的计算效率,首先对MapReduce平台下Item Based协同过滤算法存在的性能问题进行了分析;在此基础上利用Spark迭代计算及内存计算上的优势提高算法的执行效率,并实现了基于Spark平台的Item Based推荐算法。实验结果表明:当集群节点规模分别为10与20时,算法在Spark中的运行时间分别只有MapReduce中的25.6%及30.8%,Spark平台下的算法相比MapReduce平台,执行效率整体提高3倍以上。

英文摘要:

Under MapReduce computing scenarios, complex data mining algorithms typically require multiple MapReduce jobs' collaboration process to compete the task. However, serious redundant disk read and write and repeat resource request operations among multiple MapReduce jobs seriously degrade the performance of the algorithm under MapReduce. To improve the computational efficiency of ItemBased recommendation algorithm, firstly, the performance issues of the hemBased collaborative filtering algorithm under MapReduce platform were analyzed. Secondly, the execution efficiency of the algorithm was improved by taking advantage of Spark's performance superiority on iterative computation and memory computing, and the ItemBased collaborative filtering algorithm under Spark platform was implemented. The experimental results show that, when the size of the cluster nodes is 10 and 20, the running time of the algorithm in Spark is only 25.6% and 30.8% of that in MapReduce. The algorithm's overall computing efficiency of Spark platform improves more than 3 times compared with that of MapReduce platform.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679