在这份报纸,有错误繁殖和敏感分析(DRGEPSA ) 的指导关系图的方法论,由 Niemeyer 等求婚了。(消耗火焰 157:17601770, 2010 ) ,并且它对原来的指导关系图方法的差别被描述。用 DRGEPSA,包含 71 种类和 395 反应步的乙烯的详细机制与不同错误阀值被归结为几骨胳的机制。25 种类和 131 步机制和 115 步机制被发现为点火延期时间和 laminar 火焰速度的预言精确。尽管进一步的减小与 19 种类和 68 步导致更小的骨胳的机制,它不再能代表正确反应过程。与 DRGEPSA 方法,当保留好精确性时,为考虑低温度的化学并且包含 2115 种类和 8157 步的 n-dodecane 的详细机制与 249 种类和 910 步被归结为小得多的机制。如果考虑仅仅高温度(比 1000 K 高) 应用,详细机制能与 65 种类或 48 种类被简化到甚至更小的机制, 220 走。而且,为有 207 种类和 1592 步的一个煤油代理人的详细机制与各种各样的错误阀值被减少,结果证明 72 种类和 429 步机制和 392 步机制能够详细机制与那些相比预言正确燃烧性质。仅仅在他们为计算能力和同时保留的精确性被归结为可接受的尺寸水平以后,运动机制能有效地在计算被使用,这很好被认出仅仅在他们为计算能力和同时保留的精确性被归结为可接受的尺寸水平以后。因此,从现在的工作产生的骨胳的机制被期望为到狂暴或超声的燃烧的数字模拟的烃的运动机制的申请有用。
In this paper,the methodology of the directed relation graph with error propagation and sensitivity analysis(DRGEPSA),proposed by Niemeyer et al.(Combust Flame 157:1760-1770.2010).and its differences to the original directed relation graph method are described.Using DRGEPSA,the detailed mechanism of ethylene containing 71 species and 395 reaction steps is reduced to several skeletal mechanisms with different error thresholds.The 25-species and 131-step mechanism and the 24-species and115-step mechanism are found to be accurate for the predictions of ignition delay time and laminar flame speed.Although further reduction leads to a smaller skeletal mechanism with 19 species and 68 steps,it is no longer able to represent the correct reaction processes.With the DRGEPSA method,a detailed mechanism for n-dodecane considering low-temperature chemistry and containing 2115 species and8157 steps is reduced to a much smaller mechanism with249 species and 910 steps while retaining good accuracy.If considering only high-temperature(higher than 1000 K)applications,the detailed mechanism can be simplified to even smaller mechanisms with 65 species and 340 steps or48 species and 220 steps.Furthermore,a detailed mechanism for a kerosene surrogate having 207 species and 1592 steps is reduced with various error thresholds and the results show that the 72-species and 429-step mechanism and the66-species and 392-step mechanism are capable of predicting correct combustion properties compared to those of the detailed mechanism.It is well recognized that kinetic mechanisms can be effectively used in computations only after they are reduced to an acceptable size level for computation capacity and at the same time retaining accuracy.Thus,the skeletal mechanisms generated from the present work are expected to be useful for the application of kinetic mechanisms of hydrocarbons to numerical simulations of turbulent or supersonic combustion.