研究了星载激光多普勒测风雷达系统结构,构建了基于Fizeau干涉仪的鉴频仿真系统,仿真研究了Mie通道风速反演算法,并利用无线电探空数据集仿真结果统计分析了Mie通道大气水平视线(HLOS)风速反演误差.仿真和统计结果表明,基于Fizeau干涉仪的Mie通道可反演低对流层大气风速;低对流层HLOS风速误差和标准差分别小于1 m·s-1和2 m·s-1;气溶胶和云的分布影响星载激光多普勒雷达测风误差,可使风速最大偏差增大一倍.
System structure of spaceborne Doppler wind lidar is investigated. Simulation system of frequency discrimination is built based on Fizeau interferometer. The wind retrieval algorithm of Mie channel is simulated and studied. The horizontal line-of-sight(HLOS) wind error is analysed using the simulated result of the radiosonde dataset. The result shows that the wind speed of lower troposphere can be retrieved in Mie channel based on Fizeau interferometer. The average values of HLOS wind error deviation and standard deviation in lower troposphere are less than 1 m·s-1and2 m·s-1, respectively. Distributions of aerosol and cloud have an influence on wind error for spaceborne Doppler wind lidar, and the maximum wind deviation will increase twice.