位置:成果数据库 > 期刊 > 期刊详情页
基于差分进化的回溯搜索优化算法研究与改进
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP182[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西安电子科技大学经济与管理学院,西安710126, [2]西安电子科技大学数学与统计学院,西安710126
  • 相关基金:国家自然科学基金(No.11301408)
中文摘要:

属性约简是粗糙集理论的核心问题,为了获得更多更稳定的最小属性约简,根据决策粗糙集模型将最小属性约简问题转化为决策风险最小化问题,并给出了新的适应度函数计算方法;在此基础上利用回溯搜索算法较强的全局搜索性能,提出了基于回溯搜索算法的决策粗糙集属性约简算法;对UCI数据集的实验结果以及与其他约简算法的比较表明,该算法能够得到更多的最小属性约简,而且能够在多次运行中保持约简结果个数的稳定性。

英文摘要:

Attribute reduction is an important problem in rough set theory. According to a decision-theoretic rough set model, the minimal attribute reductions problem is transformed to a minimal risk of decision making problem and a new computing method of fitness function is given to get more and more stable minimal attribute reduction result. On this basis,a decision-theoretic rough set attribute reduction algorithm based on backtracking search algorithm is proposed by using the global search capability of backtracking search algorithm. The experimental result of UCI data sets and Comparison of results with other algorithms show that more minimal attribute reduction results are got by using this algorithm and the stability in quantity of the reduction results could be kept during multiple runs.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049